SHORT-FORMAT PAPERS

Contributions intended for publication under this heading should follow the format given in the Checklist for Authors [Acta Cryst. (1985). C41, 1-4].

Acta Cryst. (1991). C47, 637-638

Structure of Triammonium Hexahydrogenhexamolybdorhodate(III) Hexahydrate

By Yoshiki Ozawa,* Yoshihito Hayashi and Kiyoshi Isobe
Institute for Molecular Science, Okazaki National Research Institutes, Okazaki, 444 Japan

(Received 9 July 1990; accepted 29 August 1990)

Abstract

NH}_{4}\right)_{3}\left[\mathrm{H}_{6} \mathrm{RhMo}_{6} \mathrm{O}_{24}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) 1230.79, monoclinic, $P 2_{1} / c, \quad a=11.435(3), \quad b=$ 11.017 (2), $\quad c=11.789$ (2) $\AA, \quad \beta=100.02$ (2) ${ }^{\circ}, \quad V=$ 1462.6 (6) $\AA^{3}, Z=2, D_{m}=2.83, D_{x}=2.79 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=3.08 \mathrm{~mm}^{-1}, \quad F(000)=$ $1176, T=296 \mathrm{~K}$, final $R=0.042$ for 2248 observed reflections with $\left|F_{o}\right|>3 \cdot 0 \sigma\left(\left|F_{o}\right|\right)$. The $\quad\left[\mathrm{H}_{6} \mathrm{Rh}-\right.$ $\left.\mathrm{Mo}_{6} \mathrm{O}_{24}\right]^{3-}$ polyanion, which has approximate $D_{3 d}$ symmetry, is isostructural to $\left[\mathrm{H}_{6} \mathrm{Cr}^{111} \mathrm{Mo}_{6} \mathrm{O}_{24}\right]^{3-}$. The RhO_{6} octahedron located on an inversion center is trigonally distorted with the $\mathrm{Rh}-\mathrm{O}$ distances in the range 2.019 (5)-2.030 (5) \AA. The Mo-O distances are in the range 1.701 (7)- 2.298 (5) \AA.

Experimental. Pale-yellow rhombic crystals were obtained from a mixed aqueous solution adjusted at pH 4 containing $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{NH}_{4}\right)_{6}$ $\mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{Rh}: \mathrm{Mo}=1: 6$). D_{m} by flotation in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}-\mathrm{CH}_{2} \mathrm{I}_{2}$. Crystal $0.11 \times 0.26 \times 0.28 \mathrm{~mm}$ was mounted on an Enraf-Nonius CAD-4 diffractometer; graphite-monochromatized Mo $K \alpha$ radiation. Cell parameters were refined using 2θ values of 25 reflections in the θ range $11 \cdot 2-14 \cdot 2^{\circ} .3632$ intensities were collected in the $\theta-2 \theta$ scan mode, $2 \theta_{\text {max }}=60^{\circ}$, $-15 \leq h \leq 15,0 \leq k \leq 15,0 \leq l \leq 16$. Three standard reflections ($\overline{2} 0 \overline{6}, \overline{3} 60, \overline{4} 52$) were monitored every 2 h : no decay was observed. Numerical absorption correction was applied, transmission factors in range 1-17-1.44. No extinction corrections made. Positions of Rh and Mo atoms were located from Patterson functions. N and O atoms were found from difference Fourier syntheses. The number of NH_{4}^{+} groups for two independent sites was $1 \cdot 5$, determined by elemental analysis, and the occupancies of N atoms were thus fixed at 0.75 each. Block-diagonal least-squares refinement was made on F. No H atoms were located. All atoms were anisotropically

[^0]0108-2701/91/030637-02\$03.00

Table 1. Positional parameters ($\times 10^{5}$ for Rh and Mo ; $\times 10^{4}$ for other atoms) and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$				
\boldsymbol{x}				y
Rh	0	0	z	$B_{\text {eq }}$
$\mathrm{Mo}(1)$	$29783(6)$	$1623(7)$	0	$1 \cdot 14(2)$
$\mathrm{Mo}(2)$	$13651(7)$	$24817(6)$	$12097(6)$	$1 \cdot 86(2)$
$\mathrm{Mo}(3)$	$16072(7)$	$-23583(6)$	$-6915(6)$	$1 \cdot 67(2)$
$\mathrm{O}(1)$	$1279(5)$	$1146(5)$	$-312(5)$	$1 \cdot 74(2)$
$\mathrm{O}(2)$	$1386(5)$	$-1034(5)$	$761(5)$	$1 \cdot 5(1)$
$\mathrm{O}(3)$	$-72(5)$	$1102(5)$	$1356(5)$	$1 \cdot 5(1)$
$\mathrm{O}(4)$	$2443(6)$	$1152(6)$	$1650(5)$	$1 \cdot 9(1)$
$\mathrm{O}(5)$	$2563(6)$	$-913(6)$	$-824(5)$	$2 \cdot 1(1)$
$\mathrm{O}(6)$	$-138(6)$	$3069(5)$	$350(5)$	$1 \cdot 9(1)$
$\mathrm{O}(7)$	$3817(7)$	$1164(7)$	$-139(6)$	$2 \cdot 9(2)$
$\mathrm{O}(8)$	$3953(7)$	$-689(7)$	$1414(6)$	$3 \cdot 2(2)$
$\mathrm{O}(9)$	$2244(7)$	$3469(6)$	$619(6)$	$2 \cdot 7(2)$
$\mathrm{O}(10)$	$1315(7)$	$3049(6)$	$2540(6)$	$2 \cdot 8(2)$
$\mathrm{O}(11)$	$1612(7)$	$-2972(6)$	$-2033(6)$	$2 \cdot 8(2)$
$\mathrm{O}(12)$	$2550(7)$	$-3236(6)$	$241(6)$	$3 \cdot 0(2)$
$\mathrm{O}(13)$	$152(14)$	$4552(7)$	$-1473(8)$	$7 \cdot 0(4)$
$\mathrm{O}(14)$	$5075(13)$	$-2920(12)$	$2051(13)$	$8 \cdot 6(5)$
$\mathrm{O}(15)$	$5067(16)$	$3453(14)$	$895(14)$	$10 \cdot 4(6)$
$\mathrm{N}(1)^{*}$	$3307(9)$	$4579(11)$	$-1123(7)$	$2 \cdot 4(2)$
$\mathrm{N}(2)^{*}$	$3528(10)$	$-4828(11)$	$2297(9)$	$2 \cdot 9(3)$

* Occupancy of these atoms is 0.75 .

Table 2. Selected bond distances (\AA) and bond angles (${ }^{\circ}$)

$\mathrm{Mo}(1)-\mathrm{O}(1)$	$2.279(6)$
$\mathrm{Mo}(1)-\mathrm{O}(2)$	$2.317(6)$
$\mathrm{Mo}(1)-\mathrm{O}(4)$	$1.937(6)$
$\mathrm{Mo}(1)-\mathrm{O}(5)$	$1.936(6)$
$\mathrm{Mo}(1)-\mathrm{O}(7)$	$1.708(8)$
$\mathrm{Mo}(1)-\mathrm{O}(8)$	$1.704(7)$
$\mathrm{Mo}(2)-\mathrm{O}(1)$	$2.309(6)$
$\mathrm{Mo}(2)-\mathrm{O}(3)$	$2.267(6)$
$\mathrm{Mo}(2)-\mathrm{O}(4)$	$1.927(6)$
$\mathrm{Mo}(2)-\mathrm{O}(6)$	$1.948(6)$
$\mathrm{Mo}(2)-\mathrm{O}(9)$	$1.709(8)$

$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}(2)$	$84 \cdot 1(2)$	$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}\left(3^{i}\right)$	$95 \cdot 8(2)$
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}(3)$	$84 \cdot 2(2)$	$\mathrm{O}(2)-\mathrm{Rh}-\mathrm{O}(3)$	$97 \cdot 1(2)$
$\mathrm{O}(2)-\mathrm{Rh}-\mathrm{O}\left(3^{i}\right)$	$82 \cdot 9(2)$	$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}\left(2^{i}\right)$	$95 \cdot 9(2)$

(c) 1991 International Union of Crystallography
$\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{H}_{6} \mathrm{RhMo}_{6} \mathrm{O}_{24}\right] .6 \mathrm{H}_{2} \mathrm{O}$
refined; final $R=0.042, w R=0.059$ and $S=1.41$ were obtained for 2248 unique reflections ($R_{\text {int }}=$ 0.044) with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$; weighting scheme w^{-1} $=\left[\sigma^{2}\left(F_{o}\right)+\left(0.035\left|F_{o}\right|\right)^{2}\right] ; \quad(\Delta / \sigma)_{\max }<0.01 ; \quad-1.0 \leq$ $\Delta \rho \leq 3.0 \mathrm{e} \AA^{-3}$. Scattering factors with anomalousdispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations were performed by using the UNICSIII program (Sakurai \& Kobayashi, 1979) on a HITAC M-680H computer at the Computer Center of the Institute for Molecular Science. Final atomic parameters are listed in Table 1^{*} and selected bond distances and angles are in Table 2. Fig. 1 shows an ORTEP (Johnson, 1976) view of the discrete polyanion.

Related literature. Bond distances within some $X \mathrm{Mo}_{6} \mathrm{O}_{24}$ type polymolybdates incorporating transition metals are as follows: for $\left[\mathrm{H}_{6} \mathrm{CrMo}_{6} \mathrm{O}_{24}\right]^{3-}$, $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Mo}-\mathrm{O}$ are in the ranges 1.968 (3)1.986 (3) and $1.695(3)-2.347$ (3) \AA, respectively (Perloff, 1970); for $\left[\mathrm{PtMo}_{6} \mathrm{O}_{24}\right]^{5-}, \mathrm{Pt}-\mathrm{O}$ and Mo-O are in the ranges $1.99-2.04$ and $1.68-2.34 \AA$, respectively (Lee \& Sasaki, 1984); for $\left[\mathrm{H}_{6} \mathrm{Cu}\right.$ -

[^1]

Fig. 1. ORTEP drawing of the discrete polyanion with 50% thermal probability level.
$\mathrm{Mo}_{6} \mathrm{O}_{24}{ }^{4-}, \mathrm{Cu}-\mathrm{O}$ and $\mathrm{Mo}-\mathrm{O}$ are in the ranges $2 \cdot 02$ (1)-2.12 (1), and $1.70(1)-2 \cdot 25$ (1) \AA, respectively (Ito, Ozeki, Ichida, Miyamae \& Sasaki, 1989).

References

Ito, F., Ozeki, T., Ichida, H., Miyamae, H. \& Sasaki, Y. (1989). Acta Cryst. C45, 946-947.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lee, U. \& Sasaki, Y. (1984). Chem. Lett. pp. 1297-1300.
Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.
Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.

Acta Cryst. (1991). C47, 638-640

Structure of Caesium Selenate

By F. J. Zúñiga and T. Breczewski

Dept de Física de la Materia Condensada, Facultad de Ciencias, Universidad del Pais Vasco, Apdo 644, Bilbao, Spain
and A. Arnaiz
Dept de Química Inorgánica, Facultad de Ciencias, Universidad del Pais Vasco, Apdo 644, Bilbao, Spain
(Received 18 June 1990; accepted 7 August 1990)

Abstract

Cs}_{2} \mathrm{SeO}_{4}, \quad M_{r}=408.77\), orthorhombic, Pnam, $a=8.3777$ (8), $b=11.276$ (2), $c=6.434$ (2) \AA, $V=607.8$ (2) $\AA^{3}, Z=4, D_{x}=4.46 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha$, $\lambda=0.71069 \AA, \mu=185.06 \mathrm{~cm}^{-1}, F(000)=704, T=$ 293 K, $R=0.048,3348$ observed reflections. Average values of the $\mathrm{Se}-\mathrm{O}$ and $\mathrm{Cs}-\mathrm{O}$ distances are 1.637 (4) and 3.387 (3) \AA, respectively [range 3.038 (5)-3.872 (6) \AA with 9 and 11 coordination of caesium by oxygen].

Experimental. Single crystals of $\mathrm{Cs}_{2} \mathrm{SeO}_{4}$ were grown isothermally at 310 K from an aqueous solution (pH $=4.5$), which contained the stoichiometric molar ratio of CsOH and $\mathrm{H}_{2} \mathrm{SeO}_{4}$. The colourless crystals obtained were of good optical quality.

A prismatic crystal of dimensions $0.31 \times 0.15 \times$ 0.15 mm was used to collect intensities with an Enraf-Nonius CAD-4 four-circle diffractometer, using graphite-monochromated Mo $K \alpha$ radiation. A © 1991 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53530 (17 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

